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A statistical model was proposed in [i] to describe fatigue wear and fracture. The 
model is based on a single mechanism of the growth of subsurface fatigue cracks in quasibrit- 
tle bodies under contact loading conditions. Here, it is presumed that normal and shear con- 
tact stresses are present in the contact and that residual stresses are present in the sur- 
face layers of the material. According to the model, cracks which form in the material are 
straight, do not interact with one another, and are randomly distributed throughout the vol- 
ume of the material. Crack growth is monitored on the basis of the stress intensity factor 
at the tip of a given crack and is governed by a kinetic equation. 

In the present investigation, we use the model in [i] to numerically study fatigue wear 
and fracture. We analyze the effect of the main parameters of the model on contact fatigue. 
The conditions required for the beginning of wear, delamination, and fracture are established 
and several numerical results are presented. 

i. Initial Relations of the Problem. We first make use of the Paris equation describ- 
ing fatigue crack growth 

2m 
dl /dN = g0]~h , ( 1 . 1 )  

w h e r e  k l  i s  t h e  h i g h e s t  l o a d - c y c l e  v a l u e  o f  t h e  s t r e s s  i n t e n s i t y  f a c t o r  f o r  n o r m a l  r u p t u r e  
a t  t h e  c r a c k  t i p ;  ~ i s  t h e  h a l f - l e n g t h  o f  t h e  c r a c k ;  N i s  t h e  number  o f  l o a d  c y c l e s ;  go and 
m a r e  c o n s t a n t s  o f  t h e  e q u a t i o n .  We w i l l  a s sume  t h a t  t h e  s t a t i s t i c a l  d i s t r i b u t i o n  f o f  t h e  
cracks with respect to their initial half-length ~0 conforms to the log-normal law 

[ ( ,0 0 
] ( O , x , y ,  lo )= n(O,z,y) l ln(lo)--. .T/2] ( t , 2 )  

o- p - w a ] j ,  zo > o. 

Here n(0, x, y) is the volume density of cracks; H and o are the mathematical expectation 
and standard deviation of the logarithm of the half-length of the cracks at the initial mo- 
ment of time. We further assume that the quantities n, ~, and o are independent of the co- 
ordinates (x, y) of the given material point (the x axis is directed along the surface of 
the body, while the y axis is perpendicular to the surface). Then the probability of the 
absence of fracture at the point (x, y) is as follows [i] [also see (1.12)] 

(N ,x ,y ) - - - - -~-  1 §  = ,. (1.3) 

where erf(z) is the probability integral; ~0k = ~0k (N, x, y) is the initial half-length of 
a crack that, after N load cycles, reaches the critical half-length ~k = ~k (N, x, y) [i] 
[see (i.i)]: 

l ~k=  ~#/~ --go ( l  - -  m) y k ~  ('r, x, Y - -  Y ('r, x), a) d'v , ~ } = ( l - - m )  - I ,  
0 

= lk(N,  x, y - -  Y ( N ,  x)) = [glJk~o(N, x, g - -  Y ( N ,  x), ~)]~, k, o = kll -lj2. 
(1.4) 

In (1.4), Y(N, x) is the linear wear of the surface of the lower contacting body (for sim- 
plicity, we will henceforth assume that only one of the contacting bodies undergoes wear); 
Kfc is cyclic fracture toughness; k10 is the stress-intensity factor for normal rupture at 
the tip of a crack of unit half-length, determined in accordance with the asymptotic monomial 
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solution in [2]; a is the angle of orientation of the crack, determined from the equation 
[i] 

k2(N, x, y, ~) = 0 ( 1 . 5 )  

(k 2 is the stress intensity factor for shear at the crack tip [2]). 

By wear, we mean the conditions for which 

I(N, y,, 1,)> Iw, ( 1 . 6 )  

while the term fracture is taken to mean the conditions for which 

! (N,  + o o ,  q- ~)-- I(N, y,, l , ) ~ I p  (1. .7)  

( ~ , ,  I w, and Ip a r e  e m p i r i c a l  c o n s t a n t s ;  an e x p r e s s i o n  f o r  t h e  number o f  f r a c t u r e  p r o d u c t s  

I per unit working area was presented in [i]). 

According to [i], the depth of the layer destroyed by wear over N load cycles is ex- 
pressed as 

Y(N, x)= m: ~ ~ y [ t - - ~ ( N , x ,  y)]dy, mr [t--~(N,x,y)]dy~ 
~ (1.8)  

e~ = ~ (N, y, ,  l ,)  = {y] 0 < r (N, x) - -  y < y, ,  ~ ~ / , }  

[y, is found from (1.6)]. 

The probability of the absence of fracture [I] 

P(N)=  min ~(N,x,y). ( 1 . 9 )  
~ , Y ~ C ~  x 

Here, y ,  is determined from (I.6); C~ x is the complement of ~x to the interval (-~, Y(N, x)). 
Fracture takes place only when condition (1.7) is satisfied. A more detailed explanation of 
the contact fatigue model is given in [i]. 

We introduced the following dimensionless variables in Eqs. (1.3)-(1.5), (1.8), and 
(1.9) 

( x ' , / ,  r')  = (z, y, r)/b, (T;~, Z )  = (To~, 7;) ~-k 
(k'lo, ~ ,  qO,) = (klo, k2, q~ Lo = (Kfo/q)2 e-~, Vo = goq'me-~ 

(1.10) 

(q0 are the residual stresses acting along the surface of the body; q and b are the maximum 
pressure and the half-width of the Hertzian contact). In the variables (1.10) (with the 
primes omitted), the relations for Y and P remain unchanged but the relations for s s 
and P take the form 

~ok= 7~/~+ ( m - -  i)G o k~':('~,x,y--r('~x),a)d'~ , 
0 

= Lolk~o(N, x, g- -  Y(N,  x)~ =),~ p = 0,5 [ t  + erf_(~-l ln (~oh))]. 

(i.ii) 

Thus, the rate of wear and fracture in a unit contact depends on six dimensionless 
characteristics: o, L0, Go, m, q0, and % (the friction coefficient % = -c/p, where �9 and p 
are the shear and normal contact stresses). The initial number of dimensionless parameters 
will obviously be large in the case q0 = q0(y). 

2. Method of Numerical Analysis. The problem of wear and fracture can be studied nu- 
merically on the basis of the following relations [see (1.5), (1.8), (1.9), (I.Ii)] 

]0h i+l = /'~'1/1~ TII$ T'l lg, 2m . I ,  oh.i + ~ k .~+l -  ~ k,i + 0,5AN~ ( m -  I)G o [klo (Ni, x, y - -  
k 2m [ hY - -  r i ,  GS) + 10 ~ '  i+1 ,  X.~ y - -  Y i q - 1 ,  (26)] ] 6, 
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TABLE i 

o 

,1 %, 

g 

,i i 

0 
0,05 
0,10 
0,t5 
0,20 

0,68 2,491 22,6 3,46 0,23 
2,201 7,95 72,6 t4,6 0,64 
3,19tt,6 t05,6 22,6 0,90 
4,1t15,0 t35,8 30,t 1,13 
5,0,1118,2 /165,t 37,4 t,36 

N.10--8  

0,099 0,00215 0,96 
0,1891 0,00262 3,09 
0,2321 0.00280 4,50 
0.267 0,00293 5,79 
01297 0,00302 7,05 

0,35 t,t~ 
t ,t313,7~ 
t,65]5,5~ 
2,t3 7,t2 
2,59 8,6~ 

0,28 1,18 0,68 
0,89[ 3,83 2,t9 
t,301 5,58 3,19 
1,67 7,t8 4, t t  

8,73 5,00 2,03 

tdY/dN] �9 I01O 

= y - d u ,  

-Q �9 

~x, i 

( 2 . 1 )  

Here, the subscript i denotes the number of the step AN i with respect to the number of load 

cycles; N i = Ni_ i + ANi_i; Yi = Y(Ni, x); ~0k,i = ~0k(Ni, x, y); ~k,i = ~k(Ni, x, y). This 
scheme makes it possible for the step AN i to be chosen during the computation in relation to 
the behavior and values of Yi, ~0k,i, and Pi- 

When calculations are performed with (2.1), the angle of orientation of the crack is 
found from the relation [2] 

i ; } t g ( 2 a ) = - - 2 g  ( t - -x)[yP(OQ-(t--x) '~( t ) ldt  / ( t - -x)2--y  ~1 [yp(t)@ (t--x)  T(t)ldt 
a I{~ - x) ~ + ~"1~ ~o + [(~_ z-)~ T P] ~ . 

a 

(2.2) 

As the angle of orientation of the crack e, we choose a solution of Eq. (2.2) that corre- 
sponds to a large value of the stress-intensity factor for normal rupture. 

3. Numerical Results. We will examine the process of cyclic loading with an amplitude 
which is constant over time. The contact shear stresses will be determined in accordance 
with Coulomb's friction law with the friction coefficient Z. We henceforth assume in the 
calculations that the initial concentration of defects in the material (the spatial distri- 
bution of cracks in it) is uniform over its volume. 

Let us analyze the results of the numerical solution of a problem on the wear of a body 
(in dimensional variables) made of steel ShKhl5. Steel of this grade made by the standard 
technology is characterized by the following values [3]: 

= i , 58  + in ( ~ m ) ,  $ = o,a,  

K), c = 16,06 MPa'm lj2 go -~ 3, 26"10-11 MPa -2m.ml-m, m = 1,59. (3.1) 

We take q = 2.94 MPa, b = I00 ~m, q0 = 0, and ~ = 0.01. We will refer to the computational 
variant employing these values as the base variant. Table 1 shows data for different com- 
putational variants with five values for absolute linear wear: IYI = 0, 0.05, 0.i, 0.15, 
0.2 pm. The column "computational variant" indicates the quantity determined and its value, 
which distinguishes the given variant from the base variant. The remaining columns show the 
number of load cycles N corresponding to attainment of the prescribed values by the quantity 
IYI. The numbers N corresponding to Y = 0 coincide with incubation periods. When these num- 
bers are exceeded, Y # 0. The last row of Table 1 shows mean values of IdY/dNI (the wear 

429 



TABLE 2 

N . t 0 _ I  1 ] Y (N) 1-10 2, N. 10 - 1 1  [ Y (N)~ftO 2, 
pm pm 

0,3011 
0,3083 

28,87 
57,66 
86,79 

115,7 
144,3 
t73,2 

0 
0,000125 
0,25 
0,5 
0,75 
i 
t, 25 
1,5 

202,0 
23t,1 
260,0 
288,6 
3t7,7 
346,5 
375,~ 
404,1 

TABLE 3 

I h~o.lO~ ' I y I'IOL 1 -lm MPa 

t,75 0,000125 
2 0,25 
2,25 0,5 0,75 2,5 t 
2,75 t,25 
3 t,5 
3,25 t ,75 2 
3,5 2,25 

~.iO s 

8645 t589,36 
2078 t559,49 

t,790 54,39 
0,6938 14,67 
0,5871 t0,43 
0,5575 8,438 
0,55t2 7,528 
0,5499 6,797 
0,5554 6,394 
0,56i0 6,075 

TABLE 4 

.N.10-24 0,3840,3930,40010,40710,4i4 0,42ii0,435 0,44210,449 0,456 0,479 0,486 
~Yt, linilO I0,55810,59410,60910,6~6 0,62410,747 0,76810,77610,783 0,93510,943 
N.1O -2~ 10,53010,53710,54310,55010,556 

I 0 
, , , ,  

0,56310,599 

t,276 i 1,407 

0,70610,7i4 

1,8341i,842 

0,83610,843 

2,4t412,422 

0,606 I 0,6i3 I 0,620 

i,435 t,443 I i,450 

0,728 0,735 I 0,742 

t,979 i,994 I 2,00i 

0,865 0,87t I 0,878 

2,574 2,588 I 2,596 

0,99411,001 

3,i3213,i47 

t,038 

3,299 

0,642 I 0,649 

t,602 [ i,617 

0,77t I 0,778 

2,i54 I 2,t89 

0,908 I 0,9~5 

2,755 1 2,762 

t,044 ] t,05i I t,059 I 1,066 

3,334 I 3,349 I 3,357 [ 3,364 

rate I = dY/dL , where L is the length of the path of the crack, is obviously equal to I = 
0.Sb-ZldY/dNl) average ! over the points corresponding to the indicated values of IYI. Also, 

in Table 1 we took ~ = p - in (pm). The above data was obtained with the following steps 
for the variables x and y: Ax = 0.i pm; Ay = 1.25"10 -~ Dm. In addition, Yw = ~w = ~. 

It follows from Table 1 that linear wear Y and the wear rate dY/dN are nonlinear func- 
tions of q, q0, and ~z the fracture-toughness characteristics Kfc and go, and the defective- 
ness of_the material p and o. It can be concluded that Y is most heavily dependent on q, 
i, q0, o, and g0. Calculations show that at q0 = 49.03 and 294.2 MPa, the wear rate IdY/dNI 
increases with an increase in N. This occurs dle to the small difference in the rates of 
growth of fatigue cracks located at different depths. In other computational variants, IdY/ 
dN I differs little from the values shown in Table i. It also follows from the results we 
obtained that a steady rate of wear is not reached within the investigated range of load 
cycles. 

It is interesting to note that the incubation period of the process (see the first and 
last rows of Table i) is shorter for those computational variants for which [dY/dN I is 
greater. The presence of an incubation period is connected with the fact that the probabil- 
ity of the existence of cracks with a half-length ~ > ~k during this period is negligibly 
low (less than i0 -~ in the calculations). This is a consequence of the rapid increase in 
the functions f(0, x, y, ~0) with an increase in ~0- We conclude from Table 1 that wear in- 
tensifies with an increase in q, q0 %, ~, o, go and a decrease in Kfc 

It must be noted that, in the cases we examined, we saw a monotonic reduction in the 
maximum of the stress-intensity factor kl0 and an increase in the critical half-length ~k 
with an increase in [Yl (Y < 0). Here, for all y the angle of orientation of the cracks 
turns out to be very close to ~/2. 
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TABLE 5 

N.lO -~a 10,46t 0,472 0,4801 0,487 

[YI, p.m 0 0,6240,673 0,703 

N.t0 -2' !0,6t9 0,64510,653 0,66i 

tYI, ]Jm i1,088 1,247 t,275 1,290 

0,495 

0,7i8 

0,669 

i,298 

0,503 

0,725 

0,678 

i,305 

0,536 I 0,544 

0,863 0,870 

0,704 1 0,712 

1,465 t,500 

m 

0,587 0~595 0,603 0~6f'1 

N.i0 -~4 0,7780,7860,82i 0,829 

]Y], l-ira !1,733 i,740 1,907 t,935 

 9 6095 i096 o,997 
lYI 12 385 2 40012 407 257  

0,837 

t,950 

1,005 

2,602 

0,845 0,880 

i,958 2,125 

i,0i3 L022 

2,617 2,625 

0,888 0,896 

2,i60 I 2,i75 

i,056 1 1,064 

2,792 I 2,827 

0,904 I 0,912 

2,182 2,t90 

1,073' t,08i 

2,842 I 2,856 

0,938 

2,349 

~,089 

2,864 

The wear process is increasingly associated with the process of delamination as the 
compressive residual stresses q0 increase. The latter process differs from wear in its evo- 
lution and the greater size of the products of disintegration of the material. Thus, at 
q0 = -73.55 MPa and I = 0.014 (with the remaining parameters corresponding to the base vari- 
ant), wear still takes place (Table 2). Here, the behavior of kl0 and ~k differ from the 
case described above. With an increase in lyl (y < 0), there is a sharp reduction in k10 
to the minimum (Table 3). This reduction is followed by an increase to the maximum value 
and a subsequent monotonic decrease to zero. The behavior of ~k as a function of y is de- 
termined by the relation ~k ~ k10 -2 The angle ~ decreases monotonically with an increase 
in IYI" The wear rate dY/dN is close to constant, which can be attributed to the above- 
described dependence of kl0 on y. The values of Ax, Yw, and s were the same as previously 
in the calculations, while Ay = 2.5"10 -3 Dm. 

At q0 = -196.13; -490.33 MPa (A = 0.014, with the remaining parameters corresponding 
to the base variant), wear and delamination occur simultaneously (Tables 4 and 5). Here, 
in contrast to the previous cases, 5y = 1.45.10 -2 Dm. 

In the computational variants examined here, Y(N) is a discontinuous piecewise-constant 
function. Tables 4 and 5 show values of N i between which Y(N) = Yi+~ = const (N i ! N < Ni+ l, 
i = 0, i, ...) and at which Y(N) undergoes a discontinuity. With an increase in IYl (Y < 
0), the value of k10 initially increases. It then reaches maxima at y = -0.558 and -0.624, 
after which it decreases to zero. Similar behavior is seen from the angle a, which remains 
close to zero for any y. The behavior of ~k follows from (I.ii). The depth of the indi- 
cated extrema increases slowly with an increase in Iq~ (q0 < 0) and I. We should also note 
that there are periodic accelerations and decelerations of the wear and delamination pro- 
cesses (see Tables 4 and 5). 

As before, an increase in I is accompanied by an increase in the rates of wear and de- 
lamination, while these rates decrease with an increase in lq~ (q0 < 0). It follows from 
Tables i, 2, 4, and 5 that the wear particles encountered at q0 > 0 and relatively small 
iq0i (q0 < 0) are considerably smaller than the analogous particles seen at substantial com- 
pressive stresses q0. In the latter case, the particles are highly elongated (this follows 
from the fact that a m 0 and the critical half-lengths of the cracks are very large). Also, 
at q0 > 0 and small lq~ (q0 < 0), wear is continuous over time. This contrasts with the 
wear seen at large lq~ (q0 < 0), which is many orders greater than wear in the other case 
just mentioned. The low wear rate is connected with our neglect of various factors (surface 
roughness, abrasive contaminants in the lubricant, abrasive particles penetrating the sur- 
face, etc.) which would tend to intensify the process. 

In the calculations performed above, we assumed that the residual stresses q0(y) were 
constant in the depth direction. Numerical study of the problem showed that fracture does 
not begin at q0(y) = const. Fracture can begin when residual tensile stresses are created 
at depths (relative to the surface of the body) that are comparable to the size of the con- 
tact region. For this to occur, the stress-intensity factors k~ in the layers undergoing 
fracture must be at least of the same order of magnitude as in the surface layers subjected 
to wear. 
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TABLE 6 

Base 
,vat- :q~I,96 q=0,98 ~=0,0& ~ = 1  

P(N) i~nt GPa} GPa 

0,95 
0,90 
0,75 
0,50 
0,25 
0,1 

0,65 
0,70 
0,79 
0,91 
t ,05 
1,t9 

1,75 
1,90 
2,16 
2,48 
2,86 
3,24 

6,90 I 10,66 I 0,9t 
7,45 ] 11,50 ] 0,98 
8,45 I 13,05] 1,11 
9,73 / i5,02 I 1,28 

1t,21 / 17,29 ] 1,47 
12, 9519631 168 

~=2,69 ~=0,2 

N.11 --IO 

0,33 0,79 
0,36 0,82 
0,41 0,86 
0,47 0,91 
0,54 0,96 
0,62 1,0t 

go=i,87-iO - 1 I  
o = l  M P a  - 2 m .  

m!l - m  

0,46 1,t3 
0,53 t,22 
0,69 1,38 
0,91 1,59 
1,2t 1,83 
t,55 2,08 

go--' i ,02-  
.i0--I0 

M'pek-2m. 
1~1 1--m 

0,20 
0,22 
0,25 
0,29 
0,33 
0,38 

TABLE 7 

P (N) 

0,95 
0,90 
0,75 

B a s e  �9 m a x q ~  m a x q O ( y ) =  

=19 ,6 i  MPa =49,03  MPa~ variant Y " y " 

�9 N -  i 0  - 1 0  

0,65 
0,70 
0,79 

0,0860 
0,0928 
0,t054 

0,0105 
0,0113 
0,0i29 

P (N) 

0,50 
0,25 
0,1 

B a s e  
var ian t  

0,9i 
t ,05 
1,t9 

max qO (y) = max  qO (y) = 
Y Y 

=19,6~ l~Pa =49,03  MPa 

N.i0"-10 

0,1213 0,0148 
0,1397 0,0171 
0,1586 0,0i94 

In a uniform isotropic elastic half-plane with a stress-free surface, it is impossible 
to create depthwise-varying residual stresses q0(y) (except for stresses which change linear- 
ly with depth). In practice, various processing factors cause the materials of parts to be 
nonuniform. This in turn Creates residual stresses q0(y) in the part which vary through its 
depth. Thus, if we analyze the fracture process without resort to the solutions of the cor- 
responding contact problems of the theory of elasticity for cracked nonuniform bodies,* we 
approximately assume that q0 = q0(y) # const and we employ the dominant terms of the solu- 
tions of contact problems for cracked bodies [2] corresponding to uniform and isotropic elas- 
tic materials. The accuracy required for practical applications can generally be attained 
using such assumptions. 

Let us examine the fracture process using the example of steel ShKhlS, with the above- 
indicated base-variant parameters. We changed the values of i and q0 when we used the base 
variant to calculate wear: I = 0.08 and q0(y) = (~i + ~2Y)'exp(a~Y), ~l = -490 MPa, % = 
-16.64 TPa'm -I, ~3 = 9.5"i04 m-l Here, q~ = ~I, maxq~ = 49.03 MPa is attained at 
Ymax =-40 ~m. We took Ax = 0.I ~m, Ay = Yw = 1 ~m, and s = ~ in the calculations. Table 
6 - structured in the same way as Table i except for the replacement of IY(N) I by P(N) - 
shows the results of several variants of calculation of the probability of the absence of 
fracture P(N). As IY(N)[, P(N) is a nonlinear function of q, I, maxq~ Ymax, Kfc, go, 
~, and o. The data shown in the table indicates that P(N) is most heavily dependent on 1 
and q. The calculations also showed that P(N) depends the least on Ymax" The fracture pro- 
cess intensifies with an increase in q, maxq~ > 0, I, ~, ~, go and a decrease in lYmaxl 
(Ymax < 0), Kfc. Wear Y(N) is absent for the values of N indicated in Table 6. Here, the 
stress-intensity factor k10 increases with an increase in IYl (Y < 0) and reaches a maximum 
at a depth of 3-7 ~m. It then declines to a minimum located near the ordinate Y0 = -el/a2 
where q0(y) vanishes. This ordinate is generally located in the region of compressive resi- 
dual stresses. With a further increase in IYI (Y < 0), the coefficient k1(y) increases to 
a maximum located on the interval [Y0, Ymax] and then monotonically decreases. In the cases 
shown in Table 6, the value of maxkl0(y) at the deeper maximum is more than two orders 

Y 
greater than the value at the maximum near the surface. The calculations showed that frac- 
ture is governed by the deeper maximum, which is attributable to the fact that cracks grow 
considerably more rapidly at this depth than at the other points. 

Cracks grow nearly parallel to the surface of the body in the layer of material Y0 
y < 0, while at y < Y0 their angle of orientation a becomes close to ~/2. 

*If such solutions are available for the given problems, they can be successfully incorporated 
into the proposed model. 
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At fixed q~ and Ymax, an increase in maxq~ leads to a sharp increase in the rate 
Y 

of fracture. This is illustrated by the data in Fig. 7, where the first column shows the 
number of cycles N at which the specified probability P(N) is attained for the base variant. 
The second and third columns show the same for the base variant with maxq~ = 19.61 MPa 

Y 
and max q0(y) = 49.03 MPa, respectively. It should be noted that with a further increase in 

Y 
maxq~ the probability P(N) is determined with a high degree of accuracy only by the in- 
Y 

dicated maximum. 

The results described above qualitatively - and in some cases quantitatively - agree 
with experimental data. A direct comparison is generally difficult because of the paucity 
of literature data showing the results of contact fatigue tests and the corresponding ini- 
tial characteristics of the model examined here. 
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BUCKLING OF A NONLINEARLY ELASTIC SLAB LYING ON THE SURFACE OF A 

LIQUID WITH ALLOWANCE FOR PHASE TRANSFORMATION 

V. A. Eremeev UDC 539.3 

The equations of the three-dimensional nonlinear theory of elasticity [I] are used to 
formulate equilibrium conditions with finite strains for an arbitrary thermoelastic body 
undergoing a phase transformation. These conditions are then used to study the equilibrium 
of a circular uniform slab lying on the surface of a melt in a gravitational field. We use 
the model of a non-Hookian material as the governing relation for the material of the slab, 
this model being one possible generalization of the model of an incompressible linearly 
elastic body to the case of finite strains. The method of superimposing a small strain on 
a finite strain [i] is used to study local loss of stability of the slab due to its compres- 
sion in the radial direction. The critical strains are determined numerically. A similar 
approach is used to study buckling of the slab in the absence of phase transformation. 

i. We will examine the equilibrium of a thermoelastic body undergoing a first-order 
liquid-solid phase transformation. Similar transitions were studied within the framework of 
continuum mechanics in [2-7], where various approaches were employed to obtain relations de- 
scribing the phase transition at the phase boundary. A characteristic feature of the prob- 
lem of the equilibrium of a thermoelastic body under phase-transformation conditions is the 
presence of an a priori unknown phase boundary. As an auxiliary phase-transformation condi- 
tion serving to determine the position of the phase boundary, we choose the equation of the 
fusion curve [8]. This equation expresses the dependence of the melting point on pressure 
in the liquid [8]. 

Let the volume occupied by the body in the reference configuration be equal to v. We 
represent the external boundary of the body as the union of the surface ~ separating the 
body from the liquid and the surface o = o z U 02 U 03 = 04 U o s (Fig. i). The body is de- 

Rostov-on-Don. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 3, pp. 141-147, May-June, 1991. Original article submitted July 12, 1989; revision 
submitted January 22, 1990. 

0021-8944/91/3203-0433512.50 �9 1991 Plenum Publishing Corporation 433 


